Evidence for a dimerisation state of the Bacillus subtilis catabolite repression HPr-like protein, Crh.
نویسندگان
چکیده
The Bacillus subtilis catabolite repression HPr (Crh) exhibits 45% sequence identity when compared to histidine-containing protein (HPr), a phosphocarrier protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system. We report here that Crh preparations contain a mixture of monomers and homodimers, whereas HPr is known to be monomeric in solution. The dissociation rate of dimers is very slow (t1/2 of about 10 hours), and the percentage of dimers in Crh preparations increases with rising temperature or protein concentration. However, at temperatures above 25 degrees C and a protein concentration of 10 mg/ml, Crh dimers slowly aggregate. Typically, NMR spectra recorded at 25 degrees C showed the coexistence of both forms of Crh, while in Crh solutions kept at 35 degrees C, almost exclusively Crh monomers could be detected. Circular dichroism analysis revealed that the monomeric and dimeric forms of Crh are well folded and exhibit the same overall structure. The physiological significance of the slow Crh monomer/dimer equilibrium remains enigmatic.
منابع مشابه
The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression.
Carbon catabolite repression (CCR) of several Bacillus subtilis catabolic genes is mediated by ATP-dependent phosphorylation of histidine-containing protein (HPr), a phosphocarrier protein of the phosphoenolpyruvate (PEP): sugar phosphotransferase system. In this study, we report the discovery of a new B. subtilis gene encoding a HPr-like protein, Crh (for catabolite repression HPr), composed o...
متن کاملCarbon catabolite repression in Bacillus subtilis: quantitative analysis of repression exerted by different carbon sources.
In many bacteria glucose is the preferred carbon source and represses the utilization of secondary substrates. In Bacillus subtilis, this carbon catabolite repression (CCR) is achieved by the global transcription regulator CcpA, whose activity is triggered by the availability of its phosphorylated cofactors, HPr(Ser46-P) and Crh(Ser46-P). Phosphorylation of these proteins is catalyzed by the me...
متن کاملtrans-Acting factors and cis elements involved in glucose repression of arabinan degradation in Bacillus subtilis.
In Bacillus subtilis, the synthesis of enzymes involved in the degradation of arabinose-containing polysaccharides is subject to carbon catabolite repression (CCR). Here we show that CcpA is the major regulator of repression of the arabinases genes in the presence of glucose. CcpA acts via binding to one cre each in the promoter regions of the abnA and xsa genes and to two cres in the araABDLMN...
متن کاملCcpB, a novel transcription factor implicated in catabolite repression in Bacillus subtilis.
Recent work has shown that in Bacillus subtilis catabolite repression of several operons is mediated by a mechanism dependent on DNA-binding protein CcpA complexed to a seryl-phosphorylated derivative of HPr [HPr(Ser-P)], the small phosphocarrier protein of the phosphoenolpyruvate-sugar phosphotransferase system. In this study, it was found that a transposon insertional mutation resulted in the...
متن کاملCatabolite repression and activation in Bacillus subtilis: dependency on CcpA, HPr, and HprK.
Previous studies have suggested that the transcription factor CcpA, as well as the coeffectors HPr and Crh, both phosphorylated by the HprK kinase/phosphorylase, are primary mediators of catabolite repression and catabolite activation in Bacillus subtilis. We here report whole transcriptome analyses that characterize glucose-dependent gene expression in wild-type cells and in isogenic mutants l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular microbiology and biotechnology
دوره 3 3 شماره
صفحات -
تاریخ انتشار 2001